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A data driven subspace approach to predictive controller design
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Abstract

This paper shows the design of predictive controllers using the predictor, designed from the subspace matrices, obtained directly

from the input/output data. The model-free design approach presented in the literature so far does not include all the important

predictive control features such as inclusion of an integrator for offset-free control, constraint handling, feedforward option and a

means of tuning the controllers through the disturbance model; these features are important for practical applications and hence,

amongst other issues, addressed in this paper. The proposed predictive controller is demonstrated on multivariate systems using

MATLAB simulations and an application on a pilot scale process.
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1. Introduction

Predictive controllers have been widely used in
process industries for more than two decades (Camacho
& Bordons, 1999; Lee & Cooley, 1996; Morari, 1994;
Qin & Badgwell, 1996). Several forms of predictive
controllers such as IDCOM (Richalet, Rault, Testud, &
Papon, 1978), DMC (Cutler & Ramaker, 1979, 1980;
Lee & Cooley, 1996) QDMC (Cutler, Morshedi, &
Haydel, 1983; Garcia & Morshedi, 1986) GPC (Clarke,
Mohtadi, & Tuffs, 1987a, b), etc. have been proposed
and successfully implemented in the process industries
through the years. The term predictive control does not
designate a specific control strategy but a wide range of
control algorithms which make an explicit use of a
process model in a cost function minimization to obtain
the control signal (Camacho & Bordons, 1999; Garcia,
Prett, & Morari, 1989). Hence a model of the process is
the basic requirement for the design of predictive

controllers; this is first identified using plant input and
output data. From the process model, predictor matrices
can be obtained (for example, the dynamic matrix
constructed using step response coefficients in DMC
(Cutler & Ramaker, 1979, 1980)). The predictor
matrices are used to obtain predictions for the process
output which are used in the controller design. However,
it has been found recently that these predictor matrices
can be obtained directly from the input/output data by
using the subspace matrices (identified as a first step in
the subspace identification methods), eliminating the
intermediate step of process model identification and
providing a means for designing a predictive controller,
in the generalized predictive controller (GPC) frame-
work (e.g. Rossiter & Kouvaritakis, 2001; Rossiter &
Yao, 2000), without a parametric model. Since no
traditional parametric model is required for the con-
troller design this approach is also referred to as the
‘‘model-free approach’’, and this term has been adopted
in the literature (for example see Favoreel, De Moor,
Van Overschee, & Gevers, 1999; Stenman, 1999). The
idea is to obtain the controller matrices used in the
predictive controllers directly from the data without the
intermediate parametric model identification step.
Hence this approach can also be considered as a direct
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data driven approach. Moreover, subspace matrices
identification involves minimizing the summation of
multi-step ahead prediction errors, making the subspace
matrices based design approach appropriate for pre-
dictive control.
The predictive controller based on subspace matrices

uses the same cost-function as GPC and hence an
important question is how one obtains the predictions
utilized within the cost function. One of the key aspects
in GPC is the assumption of an ARIMAX model for the
process (Bitmead, Gevers, & Wertz, 1990; Clarke et al.,
1987a). This requires pre-specification of the order
and structure of the model to be identified for
controller design. Typically one uses reduced complexity
models which frequently introduces bias errors. More-
over, the model is usually identified in a nonlinear,
iterative manner, and in general Diophantine equations
need to be solved to obtain the prediction matrices. On
the other hand, the predictive controller designed
using subspace matrices makes no pre-assumptions
about the structure and order of the process model
(alleviating some bias errors). Moreover the prediction
matrices are obtained through a single matrix al-
gebraic calculation. In summary, the subspace approach
to predictive control has the key features of GPC
(Clarke et al., 1987a, b) such as: (1) long-range
prediction over a finite horizon; (2) inclusion of
weighting on outputs and control moves in the cost-
function and (3) choice of a prediction horizon and a
control horizon after which projected control moves are
taken to be zero. It combines these with the added
advantages of: (1) no pre-assumptions about model
order or structure; (2) parametric matrices obtained in a
single iteration and (3) not having to solve Diophantine
equations. We also note that the extension to the
multivariate case is straightforward with the subspace
approach.
Although the idea of designing predictive controllers

using the subspace matrices, such as model-free LQG
and subspace predictive controller (Favoreel & De
Moor, 1998; Favoreel, De Moor, Gevers, & van
Overschee, 1998; Favoreel et al., 1999; Rossiter &
Yao, 2000), or using the state space model identified
through subspace approach (Ruscio, 1997b, c; Ruscio &
Foss, 1998), has been around for a few years, designing
a predictive controller from subspace matrices with all

the features of the traditional predictive controller has
not been investigated fully. The equivalence of finite
horizon LQG to GPC is well known (Bitmead et al.,
1990) however there are several other important issues
that need to be addressed in the subspace predictive
control framework and they form the main contribution
of this paper. The following issues are considered: (1)
derivation of a predictive control law in the GPC
framework (with systematic inclusion of integral action,
an issue ignored in previous works); (2) extension of the

predictive control law to include feedforward control to
compensate for measured disturbances; (3) inclusion of
a constraint handling facility and (4) tuning of the noise
model.
The paper is arranged as follows. Section 2 gives an

overview of GPC design followed by a discussion of
important features of the open loop subspace identifica-
tion method in Section 3. Subspace approach to the
predictive controller design with enhanced features is
explained in Section 4. Inclusion of the independent
noise model for tuning is discussed in Section 5. Results
from the simulation and actual implementation on a
pilot scale plant using the proposed predictive control
scheme are presented in Section 6 and Section 7
respectively. The conclusions are presented in Section 8.

2. Revisit of GPC

GPC design (Bitmead et al., 1990; Clarke et al., 1987a,
b) starts by first identifying an ARIMAX model for the
process, expressed as

Aðz�1Þyt ¼ Bðz�1Þut�1 þ
Cðz�1Þ
W

et; ð1Þ

where A; B and C are polynomials in the back shift
operator, z�1; with A and C being monic.W ¼ ð1� z�1Þ
is the differencing operator. The role of the W is to
ensure integral action in the controller by including an
internal disturbance model of typical load perturbations
arising in the process control industry (Bitmead et al.,
1990). A popular quadratic cost function to be mini-
mized is

J ¼
XN2

k¼N1

ðrtþk � #ytþkjtÞ
2 þ

XNu

k¼1

lðWutþk�1Þ
2 ð2Þ

with N2 and Nu being the prediction and control
horizons respectively and l being the weighting on the
control effort. N1 is usually chosen as 1 or the process
time delay td : rtþk is the future setpoint for the time
instant t þ k: For a discussion on the selection of values
for N1; N2; Nu and l; readers are referred to (Clarke
et al., 1987a, b). Using the Diophantine equations

Cðz�1Þ
Aðz�1ÞW

¼ Ek þ q�k Fk

Aðz�1ÞW
; ð3Þ

EkB ¼ GkC þ q�kGk; ð4Þ

along with Eq. (1) (and ignoring the term Eketþk) we
obtain the k-step ahead output prediction equation

#ytþk ¼
Fk

C
yt þ

Gk

C
Wut�1 þ GkWutþk�1

¼Fky
f
t þ GkWu

f
t�1 þ GkWutþk�1

¼ f ðkÞ þ GkWutþk�1; ð5Þ
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where

Wu
f
t ¼ C�1Wut; y

f
t ¼ C�1yt

and f ðkÞ ¼ Fky
f
t þ Gku

f
t�1 is the free response of the

process. Define the vectors of predictions

Wuf ¼ ½Wut y Wutþk y WutþNu
�T;

#yf ¼ ½ #ytþ1 y #ytþk y #ytþN2
�T

rf ¼ ½rtþ1 y rtþk y rtþN2
�T;

Ff ¼ ½f ð1Þ y f ðkÞ y f ðN2Þ�T

then the multi step predictor equations can be expressed
as

#yf ¼ GWuf þ Ff ; ð6Þ

where G is the dynamic matrix containing the step
response coefficients of B=A or the impulse response
coefficients of B=AW: Substituting the above equation
in (2) we can derive the GPC control law

Wuf ¼ ðGTG þ lIÞ�1GTðrf � Ff Þ: ð7Þ

3. Subspace identification method

This section provides the necessary background on
the identification of subspace matrices from open
loop data, that will be used in the subsequent
sections for designing a predictive controller. This
section is based on the combined deterministic
and stochastic subspace state space identification
method for multivariate systems presented in Van
Overschee and De Moor (1994), Van Overschee and
De Moor (1996). Other variations in subspace identifi-
cation, for example CVA (Larimore, 1996, 1990), DSR
(Ruscio, 1997a, d) and MOESP (Chou & Verhaegen,
1997), and the use of weighting matrices in subspace
identification are not presented here. They can be found
in the standard book on subspace identification such as
Van Overschee and De Moor (1996) and the references
therein.
A linear time-invariant system can be described in a

state space innovation form as:

xkþ1 ¼ Axk þ Buk þ Kf ek; ð8Þ

yk ¼ Cxk þ Duk þ ek; ð9Þ

where uk; yk and xk are the process inputs, outputs and
states respectively. Kf is the Kalman filter gain and ek is
an unknown innovation sequence with the following
covariance matrix:

E½ekeTk � ¼ S: ð10Þ

For an l-input and m-output system, A; B; C; D; Kf and
S are ðn 	 nÞ; ðn 	 lÞ; ðm 	 nÞ; ðm 	 lÞ; ðn 	 mÞ and ðm 	
mÞ matrices respectively, where n is the state order. ek is

ðm 	 1Þ and S is the innovations covariance matrix.
Suppose the measurements of the inputs and the outputs
uk; yk for kAf1; 2;y; 2i þ j � 1Þg are available. The
data block Hankel matrices for uk; represented as
Up and Uf ; with i-block rows and j-block columns are
defined as

Up ¼

u1 u2 y uj

u2 u3 y ujþ1

y y y y

ui uiþ1 y uiþj�1

2
6664

3
7775;

Uf ¼

uiþ1 uiþ2 y uiþj

uiþ2 uiþ3 y uiþjþ1

y y y y

u2i u2iþ1 y u2iþj�1

2
6664

3
7775: ð11Þ

Each block element in the above data Hankel matrices is
a column vector of inputs, i.e., ui ¼ ½ui1 ui2 y uil �T:
Similar data Hankel matrices for yk; represented as Yp

and Yf ; can be written. The past and future state
sequences are defined as

Xp ¼ ½x0 x1 y xj�1�;

Xf ¼ ½xi xiþ1 y xiþj�1�: ð12Þ

The matrix input–output equations used in subspace
identification (Van Overschee & De Moor, 1994, 1995,
1996) are obtained by recursive substitution of
Eqs. (8)–(9):

Yf ¼ GiXf þ HiUf þ Hs
i Ef : ð13Þ

The prediction expressions of the output, Yf ; can be
written, for i; j-N; as

#Yf ¼ GiXf þ HiUf ð14Þ

¼ LwWp þ LuUf ; ð15Þ

where Wp ¼ ½Yp

Up
�; Gi ðim 	 nÞ is the extended observa-

bility matrix and, Hi ðim 	 ilÞ and Hs
i ðim 	 imÞ are

the lower triangular Toeplitz matrices containing the
impulse response coefficients corresponding to the
deterministic input uk and the unknown stochastic input
ek; respectively. p and f denote the past and the future
respectively. The subscript i follows from the number of
row blocks in the block Hankel matrices as shown
above. The transition from Eq. (14) to Eq. (15) is shown
in Appendix A.

Gi ¼ ½CT ðCAÞT y ðCAi�1ÞT�T; ð16Þ
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Hi ¼

D 0 y 0

CB D y 0

y y y y

CAi�2B CAi�3B y D

2
6664

3
7775;

Hs
i ¼

Im 0 y 0

CKf Im y 0

y y y y

CAi�2Kf CAi�3Kf
y y

2
66664

3
77775: ð17Þ

See Appendix A for more information on subspace
matrices and the estimation of state space system
matrices from the subspace matrices. See Fig. 1 for the
model parameters captured in the subspace matrices. As
will be shown in the next section, the state space system
matrices are not required for the design of the predictive
controller. Hence we are interested in identifying only
the subspace matrices.
If (i) the deterministic input uk is uncorrelated with ek;

(ii) uk is persistently exciting of the order 2i; and (iii) the
measurements go to infinity, j-N; the open loop
models can be consistently identified and identification
involves finding the prediction of the future outputs Yf

using a linear predictor. The least-squares prediction #Yf

can be found by solving the least squares problem:

min
Lw;Lu

Yf � ðLw LuÞ
Wp

Uf

 !











2

F

ð18Þ

#Yf is found by the orthogonal projection of the row
space of Yf into the row space spanned by Wp and Uf

defined as (Van Overschee & De Moor, 1996)

#Yf ¼ Yf

Wp

Uf

" #,

½Lw Lu� ¼Yf

Wp

Uf

" #w

¼Yf ½WT
p UT

f �
Wp

Uf

" #
½WT

p UT
f �

 !�1

; ð19Þ

where w represents the Moore–Penrose pseudo-inverse.
This projection can be implemented in a numerically
robust way with a QR-decomposition (Van Overschee &
De Moor, 1994, 1995, 1996; Ruscio, 1997a; Verhaegen,
1994) or using PLS (Ruscio, 1997d).

4. Predictive controller design from subspace matrices

Consider a controller objective function which is the
same as that of GPC. To simplify the notation, assume
N1 ¼ 1: The cost function to be minimized becomes

J ¼
XN2

k¼1

ðrtþk � #ytþkjtÞ
2 þ

XNu

k¼1

lðWutþk�1Þ
2

¼ðrf � #yf Þ
Tðrf � #yf Þ þWuTf ðlIÞWuf ; ð20Þ

where the future outputs are over the prediction
horizon, t þ 1 to t þ N2; and the future incremental
inputs are over the control horizon, t to t þ Nu � 1: For
the state space representation (8)–(9), the vector of the
optimal prediction of the future outputs can be
expressed in terms of the future inputs and current
states as

#yf ¼ ½ #ytþ1 y #ytþN2
�T ð21Þ

Fig. 1. Subspace representation.
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¼

C

CA

y

CAN2�1

2
6664

3
7775xt þ

D 0 0 y

CB D 0 y

y y y y

CAN2�2B y D y

2
6664

3
7775

	

ut

utþ1

y

utþNu�1

2
6664

3
7775 ð22Þ

¼ GN2
xt þ Hð1 : mN2; 1 : lNuÞuf ð23Þ

¼ Lwð1 : mN2; :Þwp þ Luð1 : mN2; 1 : lNuÞuf ; ð24Þ

where wp ¼ ½yt�iþ1 y yt ut�i y ut�1�T and uf ¼
½ut y utþNu�1�:
The predictor equation in Eq. (24) is used in

minimizing the objective function

J ¼
XN2

k¼1

ðrtþk � #ytþkjtÞ
2 þ

XNu

k¼1

lðutþk�1Þ
2 ð25Þ

to derive, for a finite fN2;Nug; the ‘subspace predictive
control (SPC)’ law presented in Favoreel and De Moor
(1998), which computes the future control moves as

uf ¼ ðlI þ LTu LuÞ
�1LTu ðrf � LwwpÞ; ð26Þ

where wp ¼ Wpð:; 1Þ: As fN2;Nug-N; the above SPC
becomes an LQG-controller presented in Favoreel et al.
(1998), Favoreel et al. (1999). However, for implementa-
tion on real processes the controller should have an
integrator since the objective function (25) does not
admit zero static error in the case of non-zero constant
reference unless the open loop process contains an
integrator (Bitmead et al., 1990). Hence we need to use
the GPC objective function, with incremental inputs
Wuf ; shown in Eq. (20). One of the several subspace
matrices based predictive controller design approaches
presented in Ruscio (1997b, c), Ruscio and Foss (1998)
has also included an integrator. In their method, to get
an integrator in the predictor, Eq. (24) is multiplied on
both sides with a difference operator, W ¼ 1� z�1;
where z�1 is the back shift operator, and then rear-
ranged to get a predictor equation with incremental
inputs and outputs. A slightly different subspace
identification method called DSR (Ruscio, 1997a, d) is
used in their approaches.
In the next section we present a different approach to

get incremental variables in the predictor equation. The
new approach uses an integrated noise model. As the
subspace model in Eq. (15) is I/O based, it is logical to
use a similar technique to that adopted in conventional
GPC (Clarke et al., 1987a, b). As will become clear
later on, the new approach is equivalent to the
original GPC design since the innovations form state
space representation in Eqs. (8)–(9) combined with

integrated noise assumption is equivalent to ARIMAX
representation.

4.1. Inclusion of integral action through integrated noise

model

Consider the noise input et as an integrating noise,
which is common in the process industries. Therefore,

ekþ1 ¼ ek þ ak; ð27Þ

ek ¼
ak

W
; ð28Þ

where ak is a white noise signal and W ð¼ 1� z�1Þ is a
differentiating operator. Note that the system consid-
ered in Eqs. (8)–(9) together with (28) is equivalent to an
ARIMAX representation, as in Eq. (1), considered in
the GPC design. Substituting Eq. (27) in (8)–(9), we
obtain

zkþ1 ¼ Azk þ BWuk þ Kf ak; ð29Þ

Wyk ¼ Czk þ DWuk þ ak; ð30Þ

where zk ¼ xk � xk�1: The subspace matrix input–out-
put expressions for the system (29)–(30) are

WYf ¼ GiZf þ HiWUf þ Hs
i Af ; ð31Þ

and

W #yf ¼ Gizk þ HiWuf ð32Þ

¼ Lw

Wyp

Wup

" #
þ LuWuf : ð33Þ

Using the system representation (29)–(30) we can write a
k-step ahead predictor as

ytþk�1 � yt�1

¼ ðCAk�1 þ?þ CA þ CÞzt þ ½ðCAk�2B þ?þ DÞ

Wut þ?þ DWutþk�1� þ ½at þ atþ1 þ?þ atþk�1�

ð34Þ

and Eqs. (21)–(22) change to

#yf ¼ ½ #ytþ1 #ytþ2 y #ytþN2
�T ð35Þ

¼ yt þ G1

N2
zt þ SN2;Nu

Wuf ð36Þ

¼ yt þ L1

wð1 : N2m; :Þ
Wyp

Wup

" #
þ SN2;Nu

Wuf ð37Þ

¼ F þ SN2;Nu
Wuf ; ð38Þ

where G1

N2
is the modified extended observability matrix

and SN2;Nu
is the ðN2m 	 NulÞ dynamic matrix contain-

ing the step response coefficients/Markov parameters
and formed from Lu:

yt ¼ ½yt yt y yt�T; ð39Þ
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G1

N2
¼

C

CA þ C

y

CAN2�1 þ?þ C

2
6664

3
7775; ð40Þ

SN2;Nu
¼

D 0 0 �� 0

CB þ D D 0 �� 0

CAB þ CB þ D CB þ D D �� 0

�� �� �� �� ��

CAN2�2B þ � � þCB þ D CAN2�3B þ � � þCB þ D �� �� ��

2
6666664

3
7777775

¼ Luð1 : N2m; 1 : NulÞ

Il 0 y 0

Il Il y 0

y y y y

Il Il y Il

2
6664

3
7775: ð41Þ

L1

w is constructed from Lw as

L1

wðmðk � 1Þ þ 1 : mk; :Þ ¼
Xk

i¼1

Lwðmði � 1Þ þ 1 : mi; :Þ

for 1pkpN2 ð42Þ

and F is the free response of the process output.

F ¼ yt þ L1

wð1 : N2m; :Þ
Wyp

Wup

" #
: ð43Þ

Note that the matrices L1

w and SN2;Nu
are related in a

simple manner to Lw and Lu: Even though L1

w and SN2;Nu

can be alternatively directly identified from the differ-
entiated data, it is difficult to design an identification
signal for such an identification. Hence, a simple
strategy is to identify Lw and Lu and use these matrices
to form L1

w and SN2;Nu
:

The objective function in Eq. (20) can be expanded
as

J ¼ ðrf � F � SN2;Nu
Wuf Þ

Tðrf � F � SN2;Nu
Wuf Þ

þ WuTf ðlIÞWuf : ð44Þ

Differentiating J with respect toWuf and equating it to
zero gives the control law

Wuf ¼ ðSTN2;Nu
SN2;Nu

þ lIÞ�1STN2;Nu
ðrf � F Þ: ð45Þ

Only Wuf ð1Þ is implemented and the calculation is
repeated at each time instant. Hence at time instant t; we
only calculate

Wut ¼ Wuf ð1Þ ¼ mlðrf � F Þ; ð46Þ

where ml is made of the first l-rows of the
matrix ðSTN2;Nu

SN2;Nu
þ lIÞ�1STN2;Nu

: Therefore ut is

implemented as

ut ¼ ut�1 þWut

¼ ut�1 þ ml rf � yt þ L1

wð1 : N2m; :Þ
Wyp

Wup

" #( )( )
:

ð47Þ

Note that the above control law has a guaranteed
integral control action and obtained directly from the
subspace matrices, without any intermediate parametric
model identification step.

4.2. Inclusion of feedforward control

If some of the process disturbances are measurable,
then with the understanding that measured disturbances
are those process input variables which cannot be
manipulated for controlling the process outputs, the
state space representation of the process (8)–(9) can be
modified as

xkþ1 ¼ Axk þ ½B Bv�
uk

vk

" #
þ Kf ek; ð48Þ

yk ¼ Cxk þ ½D Dv�
uk

vk

" #
þ ek; ð49Þ

where vtðh 	 1Þ is the vector of measured disturbance
variables. The matrix input–output Eqs. (13)–(15)
change to

Yf ¼ GiXf þ HiUf þ Hv
i Vf þ Hs

i Ef ; ð50Þ

#Yf ¼ GiXf þ HiUf þ Hv
i Vf ð51Þ

¼ L8
w W8

p þ LuUf þ LvVf ; ð52Þ

where

W8
p ¼ ½Yp Up Vp�T

with Vp and Vf being the past and future data Hankel
matrices of vt defined in the same way as those
corresponding to ut in (11). The subspace matrices L8

w ;
Lu and Lv are obtained by finding the prediction of
future outputs, Yf ; by solving the least-squares problem

min
Lw ;Lu;Lv

Yf � ðLw Lu LvÞ

W8
p

Uf

Vf

0
B@

1
CA

















2

F

: ð53Þ

The solution is obtained as explained in Section 3. For
predictive control we have the values of measured
disturbance only upto the current sampling instant, t;
(and do not have the knowledge of the future values of
measured disturbance) i.e., vk for k ¼ t; t � 1; t � 2;y
are known but vtþk for k ¼ 1; 2;y;N2 are not available
for the prediction of #ytþk: Therefore we can write the
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prediction expression for #yf as

#yf ¼ yt þ L7
w ð1 : N2m; :Þ

Wyp

Wup

Wvp

2
64

3
75þ SN2;Nu

Wuf ð54Þ

¼ F8 þ SN2;Nu
Wuf ; ð55Þ

where L7
w is constructed from L8

w ; and F8 is the free
response for the case of measured disturbances.

L7
w ðmðk � 1Þ þ 1 : mk; :Þ ¼

Xk

i¼1

L8
w ðmðk � 1Þ þ 1 : mk; :Þ

1pkpN2; ð56Þ

F8 ¼ yt þ L7
w ð1 : N2m; :Þ

Wyp

Wup

Wvp

2
64

3
75: ð57Þ

SN2;Nu
is the same as defined before in Eq. (41).

Therefore, the feedback plus feedforward control law
becomes

Wuf ¼ ðSTN2;Nu
SN2;Nu

þ lIÞ�1STN2;Nu
ðrf � F8Þ: ð58Þ

4.3. Constraint handling

Constraints arise due to physical limitations, quality
specifications, safety concerns and limiting the wear of
the equipment. One of the main features of MPC, its
prediction capability, is useful in anticipating constraint
violations and correcting them in an appropriate way
(Camacho & Bordons, 1999). The explicit handling of
constraints may allow the process to operate closer to
optimal operating conditions (Camacho & Bordons,
1999). For the constrained case, the computations are
more involved. The problem takes the form of a
standard Quadratic Programming (QP) formulation
and the optimization is done numerically. The quadratic
program solved at every instant is

min
Wu

J ¼ ðrf � F ÞTðrf � F Þ þWuTðSTN2;Nu
SN2;Nu

ÞWu

� 2ðrf � F ÞTSN2;Nu
Wu

¼WuTðSTN2;Nu
SN2;Nu

þ lIÞWu

� 2ðrf � F ÞTSN2;Nu
Wu

¼
1

2
WuTPWu þ cTWu; ð59Þ

s:t: YWupC; ð60Þ

where

P ¼ STN2;Nu
SN2;Nu

þ lI ; ð61Þ

c ¼ �2STN2;Nu
ðrf � F Þ; ð62Þ

matrices Y and C are formed from the constraints (see
Appendix B). The optimization of the above QP

formulation is carried out by means of the standard
commercial optimization QP code at each sampling
instant and then the value of ut is sent to the process.
Though computationally more involved than the other
simpler algorithms, the flexible constraints handling
capabilities of predictive controllers are very attractive
for practical applications, since the economic operating
point of a typical process unit often lies at the
intersection of constraints (Prett & Morari, 1980;
Camacho & Bordons, 1999). For more discussion on
other types of constraints, for example soft constraints
or specifications on the process response characteristics,
readers are referred to Camacho and Bordons (1999),
Garcia et al. (1989), Lee and Cooley (1996), Qin and
Badgwell (1996) and the references therein.

5. Tuning the noise model

The disturbance dynamics of industrial processes
frequently change with time. Tuning of the noise model
is a key feature of predictive controller formulations
such as GPC (Bitmead et al., 1990). It is necessary to
incorporate such a feature in the proposed predictive
controller derived from subspace matrices. For this
reason we need to separate the state space model of the
system in Eqs. (8)–(9) into two parts, a deterministic
part and a stochastic part which are similar to the
process model and noise model in an equivalent input–
output transfer function framework as

yt ¼ yd
t þ ys

t

¼ ½CðzI � AÞ�1B þ D�ut þ ½CðzI � AÞ�1Kf þ 1�et:

ð63Þ

It is observed that both deterministic and stochastic
parts have the same poles. Hence an equivalent
representation for the above equation in the discrete
transfer function domain would be an ARMAX model

yt ¼
Gðz�1Þ
Hðz�1Þ

ut þ
F ðz�1Þ
Hðz�1Þ

et: ð64Þ

Hðz�1Þ and F ðz�1Þ are monic polynomials in z�1: We
can write

½CðzI � AÞ�1Kf þ 1� ¼ 1þ CKf z�1 þ CAKf z�2 þ ?

ð65Þ

The assumption that the noise model F ðz�1Þ=Aðz�1Þ ¼ 1
is equivalent to assuming that the Kalman gain matrix,
Kf ; is equal to zero. Therefore if the user desires to
change the stochastic part of the identified innovation
model, without changing the deterministic model and
hence without changing the system matrices C and A;
the only way to do it is by changing the Kalman gain
matrix, Kf :
Suppose that the new Kalman gain matrix is

represented as Kn: Kn is a matrix ðm 	 nÞ for a
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multiple-output system, and a vector ð1	 nÞ for a single-
output system. We can express Kn as

Kn ¼ Kf þ K 0: ð66Þ

We can then write

½CðzI � AÞ�1Kn þ 1�

¼ 1þ CKnz�1 þ CAKnq�2 þ? ð67Þ

¼ 1þ CðKf þ K
0
Þz�1 þ CAðKf þ K 0Þq�2 þ? ð68Þ

¼ ½CðzI � AÞ�1Kf þ 1� þ ½CK 0z�1 þ CAK 0z�2 þ ?�:

ð69Þ

The stochastic part of the output with the new Kalman
gain matrix is

ðys
tÞ

n ¼ ½CðzI � AÞ�1Kn þ 1�et ð70Þ

¼ ½CðzI � AÞ�1Kf þ 1�et þ ½CK 0z�1

þ CAK 0z�2 þy�et ð71Þ

¼ ys
t þ ½CK 0z�1 þ CAK 0z�2 þy�et ð72Þ

¼ ys
t þ ½C CA y CAn�1�K 0

et�1

et�2

y

et�n

2
6664

3
7775 ð73Þ

¼ ys
t þ ðGnK 0ÞTep ð74Þ

where ep ¼ ½et�1 et�2 y et�n�T and Gn is the observa-
bility matrix which can be estimated implicitly in the
subspace identification method without having to first
calculate the system matrices C and A; through the SVD
approach by inspecting the number of dominant
singular values in the singular value decomposition of
LwWp:

LwWp ¼ðU1 U2Þ
S1 0

0 S2

 !
VT
1

VT
2

 !

EU1S1V
T
1 as j-N; ð75Þ

Gi ¼ U1S
1=2
1 : ð76Þ

If n is the number of dominant singular values
taken in S1; then Gi will be an ðmi 	 nÞ matrix,
where i is the number of block rows taken in Wp:
Since the knowledge of the state space system matrices
A and C is not required, the new stochastic model
can be incorporated in a model free manner. Now the
prediction with the ‘‘tuned’’ noise model can be written
as

ð #ytÞ
n ¼ #yt þ ðGnK 0ÞTep ¼ #yt þ gnep; ð77Þ

where gn ¼ ðGnK 0ÞT; which can be considered as a
vector of impulse response coefficients (Markov
parameters for the multivariate case) with the new noise
model. gn is constructed from the estimated observa-
bility matrix, Gn; and the user specified ðn 	 mÞ matrix,
K 0: Noise model tuning is used as a tool to make up for
the process-model mismatch resulting from changes of
the process from time to time or simply as tuning
parameters. ep contains the past prediction errors and
can be estimated from the data as one step ahead
prediction errors. In essence adding the term ½ðGnK 0ÞTep�
is equivalent to filtering the past prediction errors.
Hence K 0 is used as a tuning parameter and is chosen in
such a way that it minimizes the prediction errors.
Thus incorporating a new noise model simply involves

the addition of a new term in the calculation of the free
response of the process. Hence the free response
calculation, Eq. (43), modifies as

F ¼ yt þ L1

wð1 : N2m; :Þ
Wyp

Wup

" #
þ Uep; ð78Þ

where U ðN2m 	 nÞ is a left-upper triangular matrix
constructed from the elements of gn:

U ¼

gnð1Þ gnð2Þ y gnðn � 1Þ gnðnÞ

gnð2Þ gnð3Þ y gnðnÞ 0

y y y y y

gnðN2Þ y gnðnÞ y 0

2
6664

3
7775: ð79Þ

6. Simulations

The proposed control design method is tested in
simulations. The system example is taken from MA-
TLAB/MPC toolbox help-manual.

y1ðsÞ

y2ðsÞ

" #
¼

12:8 e�s

16:7sþ1
�18:9 e�3s
21:0sþ1

6:6 e�7s

10:9sþ1
�19:4 e�3s
14:4sþ1

" #
u1ðsÞ

u2ðsÞ

" #

þ
3:8 e�8s

14:9sþ1

4:9 e�3s

13:2sþ1

" #
wðsÞ þ

e1ðsÞ

e2ðsÞ

" #
: ð80Þ

Open loop input/output data is obtained by exciting the
open loop system using a designed ‘RBS’ signal of magni-
tude 1 for the inputs, uk and random numbers of standard
deviation 0.1 for the white noise sequences, ek; in
MATLAB-Simulink. A random walk signal is designed
for the measured disturbance wk by passing a white noise
signal of standard deviation 0.1 through an integrator.
Two-time units is used as sampling period. Using sub-
space identification, with i ¼ 50 (row blocks) and j ¼
2000 (column blocks) in the data Hankel matrices, the
subspace matrices Lwð100	 250Þ; Luð100	 100Þ and
Lvð100	 50Þ are identified. The simulation data and the
models from subspace matrices are plotted in Figs. 2 and 3.
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Fig. 2. Inputs, measured disturbance and outputs data from simulations.

Fig. 3. Comparison of process and noise models from subspace matrices with the true models.
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Fig. 5. Predictive controller without and with the feedforward control. eðsÞ ¼ 0:

Fig. 4. Predictive controller without and with the integrator. wðtÞ ¼ 0; eðsÞ ¼ 0:
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As can be seen from (3), the impulse response models from
the identified subspace matrices match very well with the
true impulse response models. Note that even though the
signal used for the measured disturbance is not a white
noise signal, we can still identify the model corresponding
to the measured disturbance very accurately.
In Fig. 4 the simulation results with subspace based

predictive controller without an integrator (SPC in
Favoreel & De Moor, 1998) is compared with the
predictive controller with integral action. As illustrated,
the controller with integrator gave no offset for non-
zero setpoints. In Fig. 5 the predictive controller
performance is compared for the cases without and
with feedforward control. As illustrated, better con-
troller performance is achieved with a feedforward
control.
For a range of values for l; N2; Nu and constraints on

the input moves, Wu; a subspace matrices based
predictive controller is implemented on the above
process in MATLAB-Simulink. The closed loop system
response for different sets of tuning parameters is
illustrated in Figs. 6–9.
In Fig. 6 it can be seen that as the weighting, l;

on the input increases the controller response
becomes less aggressive. For a given prediction horizon,
as the control horizon, Nu; increases, the controller gives
more aggressive tracking performance as shown in

Fig. 7. For a given control horizon, as the prediction
horizon, N2; increases the controller gives better setpoint
tracking performance (8). Fig. 9 shows the setpoint
tracking under different constraints on the incremental
control moves, Wu: It can be seen that smaller the
magnitude of the maximum allowed control moves,
more sluggish is the controller response to setpoint
changes.

Noise model tuning: To illustrate the tuning of noise
model with the subspace approach consider the process
model changes with time, in other words there is a
mismatch between the true process model and the
identified process model used in the controller design.
Consider the case when the process model from Eq. (80)
changes to

y1ðsÞ

y2ðsÞ

" #
¼

12:8 e�s

16:7sþ1
�18:0 e�3s

21:0sþ1

8 e�7s

10:9sþ1
�18 e�3s

14:4sþ1

" #
u1ðsÞ

u2ðsÞ

" #

þ
3:8 e�8s

14:9sþ1

4:9 e�3s

13:2sþ1

" #
wðsÞ þ

e1ðsÞ

e2ðsÞ

" #
: ð81Þ

Fig. 10 illustrates the controller response without and
with the on-line noise model tuning feature.

Fig. 6. Variation of input weighting, l: wðtÞ ¼ 0; eðsÞ ¼ 0:
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Fig. 7. Variation of control horizon, Nu: wðtÞ ¼ 0; eðsÞ ¼ 0:

Fig. 8. Variation of prediction horizon, N2: wðtÞ ¼ 0; eðsÞ ¼ 0:
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Fig. 9. Constrained case predictive controller. wðtÞ ¼ 0; eðsÞ ¼ 0:

Fig. 10. Noise model tuning for model mismatch. wðtÞ ¼ 0; eðsÞ ¼ 0:
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7. Experiment on a pilot scale process

The proposed predictive controller is tested
on a multivariate pilot scale system. The system
considered, shown in Fig. 11, is a three tank system
with two inlet water flows. The levels of tank-1 and
tank-2 are the two controlled variables (CVs).
The setpoints (SPs) for the flow rates through the
valves-A and B are the two manipulated variables
(MVs). The flow rates through the valves-A and B are

controlled through the local-PID controllers on each
valve. The setpoints for the flow rates come from a
higher level advanced controller application. The local-
PID controllers, which are single variate, are at
faster sampling ð1 sÞ: The higher level controller,
which is multivariate and does computations to
minimize an optimization function, sends controller
outputs every 6 s: The system is configured so
as to emulate a typical multivariate system in the
industries.

Fig. 11. Experimental setup.

Fig. 12. Step response coefficients from the subspace matrices identified using the open loop data.
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Tank-3 and valve-C are used primarily to introduce
interactions between the variables in the system. As can
be seen in Fig. 11 a change in the level in tank-1 effects
the level in tank-2 via tank-3 level. The degree of
interaction can be manipulated by changing the valve-C
position. If the valve-C is completely closed then
the level in tank-2 is independent of the level
in tank-1 (zero interactions). By opening the
valve-C interactions are introduced in the tank-2 level.
Valve-C is maintained at a fixed open position through
out the exercise. Note that the level in tank-1 is
independent of the levels in tank-2 and 3. The step
response models for the system, which are formed from
the impulse response coefficients in the subspace
matrices, are plotted in Fig. 12. The correlations
between the variables are clear from the step response
plots.
Open loop step-test data for the system is collected by

sending two (uncorrelated) designed ‘PRBS’ signals for
the SPs of the flow rates through valves-A and B.
Subspace matrices are identified using the open loop
data. A multivariate subspace matrices based predictive
controller is then designed for the system. The controller
parameters (weighting matrices, prediction horizon,
control horizon and noise model) are tuned for a
smooth controller performance. The closed loop re-
sponse for the unconstrained and constrained
ðjDujp0:5Þ cases are plotted in Fig. 13 and Fig. 14,
respectively.

8. Conclusions

In this paper design of the predictive controller, in the
GPC framework, using the subspace matrices calculated
through the subspace identification method is addressed.
Important issues in practical implementation of the
predictive controllers such as integral action, constraint
handling and feedforward control are discussed. It has
been shown that the noise model can be independently
specified by the user through the addition of a new term
to the predictor equation in the model-free manner,
which is shown to be equivalent to changing the Kalman
filter gain matrix. The equivalence of the predictive
controller designed from subspace matrices to the
traditional GPC is shown in Appendix C. The proposed
predictive controller is tested on multivariate systems in
simulations and on a pilot scale process.

Appendix A. A closer look at the subspace matrices

The matrix input–output equations used in subspace
identification, shown below, are derived by the recursive
substitution of Eqs. (8)–(9):

Yp ¼ GiXp þ HiUp þ Hs
i Ep; ðA:1Þ

Yf ¼ GiXf þ HiUf þ Hs
i Ef ; ðA:2Þ

Fig. 13. Subspace based predictive controller on the pilot scale process.
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Xf ¼ AiXp þ DiUp þ Ds
i Ep; ðA:3Þ

where

Di ¼ ½Ai�1B Ai�2B y B�;

Ds
i ¼ ½Ai�1K Ai�2K y K �:

Substituting Eq. (A.1) in Eq. (A.3) we obtain

Xf ¼ ½AiGw
i ðDi � AiGw

i HiÞ ðDs
i � AiGw

i Hs
i Þ�

Yp

Up

Ep

2
64

3
75:
ðA:4Þ

Substituting Eq. (A.4) in Eq. (A.2), as fi; jg-N; we can
write

Yf ¼ LwWp þ LuUf þ LeEf ; ðA:5Þ

where Lw is the subspace matrix corresponding to the
states, Lu the subspace matrix corresponding to the
deterministic inputs, and Le the subspace matrix
corresponding to the stochastic inputs.
If we take a closer look by expanding subspace

matrices, see Fig. 1, we observe that the first row of the
subspace matrix Lw is the ARX model of the system. As
i-N; the last row of subspace matrices Lu and Le

transform into impulse response models for the process
and disturbance respectively.
In the open loop subspace state space identification

methods, the sequence of the future states, Xf ; and the
extended observability matrix, Gi; are estimated using
Eqs. (14)–(15) and it is required that the pair fA;Cg be

observable since only the modes that are observable can
be identified. Furthermore, the pair fA; ½B Q1=2�g
requires to be controllable. This implies that all modes
are excited by both the deterministic input uk and the
stochastic input ek: Note that the deterministic and
stochastic subsystems may have common or completely
decoupled input–output dynamics. If the pair fA;Cg are
observable, then the rank of Gi is equal to the state order
n: Hence i should be chosen higher than the number of
states in the state space model to be identified. j is
typically chosen as 100	 i:Using the SVD approach the
reduced order observability matrix, Gn; and the non-
steady state Kalman filter estimate of state sequence, #Xf ;
are obtained. The state space matrices A; B; C; D; Kf

and S can then be estimated by using either the obser-
vability matrix or the state sequence estimate (Chou &
Verhaegen, 1997; Larimore, 1996, 1990; Van Overschee
& De Moor, 1994, 1995, 1996; Ruscio, 1997a, d).

Appendix B. QP formulation for constraints handling

QP-formulation of the constraints is well known and
available in the literature. Typical process constraints
are as follows:

uminputpumax 8t Amplitude limits;

WuminpWut ¼ ut � ut�1pWumax 8t Slewrate limits;

yminpytpymax 8t Quality limits:

Fig. 14. Subspace based predictive controller for the constrained case on the pilot scale process.
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These constraints for the predictive controller can be
expressed as

uminputþkpumax k ¼ 0; 1; 2;y;Nu � 1;

WuminpWutþkpWumax k ¼ 0; 1; 2;y;Nu � 1;

yminp #ytþkjtpymax k ¼ 1; 2;y;N2:

Define

L1 ¼ ½Wumin y y Wumin�T;

U1 ¼ ½Wumax y y Wumax�T;

L2 ¼

umin � ut�1

y

y

umin � ut�1

2
6664

3
7775; U2 ¼

umax � ut�1

y

y

umax � ut�1

2
6664

3
7775;

L3 ¼ ½ymin y y ymin�T � F ;

U3 ¼ ½ymax y y ymax�T � F ; and

R ¼

1 0 y 0

1 1 y 0

y y y y

1 1 1 1

2
6664

3
7775:

The constraints can be rewritten as

L1pWuf pU1;

L2pRWuf pU2;

L3pSN2;Nu
Wuf pU3:

These constraints can be combined to the form of a
single matrix inequality:

YWupC ðB:1Þ

with

Y ¼ ½�I � R � SN2;Nu
I R SN2;Nu

�T;

C ¼ ½�L1 � L2 � L3 U1 U2 U3�T:

Appendix C. Equivalence of subspace and GPC predictor

matrices

The vector of predictor equations used in subspace
based predictive controller is

#ytþ1

y

#ytþN2

2
64

3
75 ¼Lwð1 : N2m; :Þ

yt�iþ1

y

yt

ut�i

y

ut�1

2
6666666664

3
7777777775

þ Luð1 : N2m; 1 : NulÞ

ut

y

utþNu�1

2
64

3
75:

Therefore for a k-step ahead prediction

#ytþk ¼Lwððk � 1Þm þ 1 : km; :Þ

yt�iþ1

y

yt

ut�i

y

ut�1

2
6666666664

3
7777777775

þ Luððk � 1Þm þ 1 : km; :Þ

ut

y

utþNu�1

2
64

3
75

¼L1

wððk � 1Þm þ 1 : km; :Þ

yt�iþ1

y

yt

ut�i

y

ut�1

2
6666666664

3
7777777775

þ SN2;mððk � 1Þm þ 1 : km; :Þ

Wut

y

WutþNu�1

2
64

3
75

¼ ½pi�1 y p1 p0 qi�1 y q1 q0�

	

yt�iþ1

y

yt

ut�i

y

ut�1

2
6666666664

3
7777777775
þ ½sk�1 y s1 s0�

Wut

y

Wutþm�1

2
64

3
75

¼ ½p0 þ p1z
�1 þ?þ pi�1z

�iþ1�yt

þ ½q0 þ q1z
�1 þ?þ qi�1z

�iþ1�ut�1

þ ½s0 þ s1z
�1 þ?þ sk�1z

�zþ1�Wutþk�1

¼ Pðz�1Þyt þ Qðz�1Þut�1 þ SkWutþk�1: ðC:1Þ
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Comparing the above equation with Eq. (5), we observe
that

P ¼
Fk

C
; Q ¼

GkW

C
; Sk ¼ Gk: ðC:2Þ

Therefore, the parametric matrices obtained in GPC
design by first identifying an ARIMAX model for the
process and then through recursive solution of the
Diophantine equations (Bitmead et al., 1990), are
directly identified by the subspace identification. This
removes the requirement of pre specifying order and
structure (ARIMAX) for the process model.
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